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Summary 
This paper proposes a transcendental function as a common expression of the forms of the 

X-ray diffraction of three phases in several typical polymers, which is a indispensable supplement 
of the Gaussian-Cauchy function in actual application. The function includes five special examples 
(Gaussian-Cauchy function etc. );satisfies eight requests in application, such as very high fitting 
accuracy, better flexibility and generality etc, ;possesses theoretical completeness and logicality~ and 
reflects out the dialectical relation of the unity of opposites between different phases in 
polymers. When studying the relation between structure and properties of complex polymers by 
means of the resolution of X-ray  diffraction peak of the superposition, the function not only 
can give accurate data but also can carry out many valuable exploration for crystal grain size, 
lattice distortion and transitive state in polymers. 

Introduction 
Earlier scholars in some countries described the X - r a y  diffraction of three phases in 

polymers in the following way C1--61 ..a symmetrical function was used to describe crystalline 
and transitive X-ray diffraction multipeaks;some asymmetrical functions were used to describe 
amorphous X- ray  diffraction multipeaks. The defects of described method are that relative 
error of fit(diffraction curve and calculated curve)is larger and it does not reflect the contact 
between three phases(crystalline, amorphous and transitive states) in polymer. So that it can 
not provide accurate results for the study of the structure of polymers. According to the view 
of the unity of opposites in philosophy, we think that the X-ray diffraction of different phases 
in polymer possesses the law of the diffraction of the unity, i. e. the separate mathematical 
expressions may be replaced by a common expression. For this purpose, the author had explored 
the problem in the previous work(7/, and had obtained some elementary results being imperfect, 
there are reciprocal restraint conditions between principal parameters P, W1 and Wr;goodness 
of fit is insufficient; the formula only apply to smaller interval of angle of diffraction and so 
on. To meet the need for application, the common expression of the forms of the X - r a y  
diffraction of different phases in various polymers is necessary and must satisfy some requirements 
as follows: (1)there are not reciprocal restraint conditions between principal parameters P, W1 
and Wr; (2)accuracy of fit is high-grade; (3)applied range is extensive; (4)the function has 
only a maximum value in choosed interval of angle; (5)initial values of the parameters are 
choosed easily~ (6)it may apply to larger interval of angle of diffraction; (7)the independent 
variable x may represent 0 , 2 0  and other independent variable besides diffraction angle; (8)it 
is applicable to all curves having more or less experimental error. 

The authors have proposed further a formula by the above mentioned requirements as a 
common expression of the forms of the X-ray diffraction of three phases(amorphous, crystalline 
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and transitive states) in various polymers. This fact explains forcefully that the X-ray diffraction 
of three phases in polymer possesses the law of diffraction of the unity. The formula will be 
considerably useful for the study of the structure and performance of polymers. 

Experimental 

I. The new function proposed by the authors 
To remedy some defects of the old formulae, a new function form is created(course of 

derivation omitted). Its general form is 

where 
y (x) =fA exp ( -  (ln2) Q (x) } + ( l - f )  A / ( I + Q  (x) 1 (1) 

Q (x) = I (x-P) /(WlWr) 12exp{ a exp ( -  (x-x o ) 2k2) +b}, 
a=21n (Wr/Wl)/{  exp I -  (P-Wl-x  o ) 2k~) ---exp ( -  (P+Wr-x o ) 2k2) }, 
b=ln (WlWr) - (a/2) {exp f -  (P-Wl-x  o ) 2k2) +exp ( -  (P+Wr-x o ) ~k 2) } 

y(x), A, P, f, x, Wl, Wr, x o and k are respectively the strength of every diffraction of the X-ray 
diffraction multipeak(crystalline, amorphous or transitive state), the height of peak, the position 
of peak, the factor of peak shape, the angle of diffraction(denoted by 20 ) , t he  left half- 
peak breadth, the right half-peak breadth, the angular coordinate of the top point of convex 
(concave) locus of the diffraction multipeak and convex(concave)extent scale. 

Next, it should be proved that Eq. (Dis suitable to the X-ray diffraction of the polymers 
with the different phases. 

]I .  Expounding and proving 
Up to the present, the expression used for the symmetrical, multipeaks of the crystalline 

state is the Gaussian-Cauchy function, i.e. 

y(x)=fA exp{-(ln2) [2 (x-P) /W)2}+(1- f )A/{ l+(2(x-P) /W)2} ,  (2) 

where W represents the half-peak breadth of the diffraction multipeak of the crystalline state, 
and the rest symbols are the same as in the above Eq. (1). It was feasible through inspecting 
in practice for quite pure crystalline state. In fact, Eq. (2)is a special case of Eq. (1). Thence 
Eq. (1)is suitable to mathematical description of the crystalline state. Because former objective 
conditions were restricted(testing means and mathematical model), polymers were divided 
artificially and arbitrarily into two kinds: crystalline polymers and amorphous state polymers. 
In fact, this division is not quite right, because there is no strict boundary of phases between 
crystalline state and amorphous state, and there is also another kind of state between them, 
the transition state of half-and-half  order(61. The X- ray  diffraction peaks of the pure 
transitive state or crystalline state with transitive state are not quite symmetric, therefore it 
is evidently unsuitable to describe the diffraction peaks by symmetrical Gaussian--Cauchy 
function. The description can not reflect out original appearances of the diffraction peaks and 
error of fit is large. The formula (1) is most applicable for the diffraction peaks, Now we are 
going to prove that Eq. (1) is also valid as a mathematical description of the X-ray diffraction 
of the amorphous state by taking the amorphous specimens of three rather typical polymers as 
examples, and for further examining the suitability of Eq. (1), it is applied to the multipeak 
resolution of specimens of undrawn polypropyreae fibers in both crystalline state with transitive 
state of half-and-half order and amorphous state. To start with, we explain the symbol 
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m m 
8 ={ ( ~ ( y ~ - u  2)}1/2• , (3) 

i=1 i=l  

which is called the relative error of fit. I t  reflects the exact degree of mutual fitting between 
the experimental curve and the calculated curve(where y~ and Y~ stand for the calculated values 
and the measured values of the diffraction strength corresponding to the angles of diffraction 
~; m is the sum of the points of division of angular interval). 

(a) Amorphous polypropyrene specimen 
Angles of diffraction x ( 2 0 ) t a k e  values between 10.2 ~ and 24 ~ , sum of points of d i -  

vision m=70, value of each point of division x~=10.2 ~ -F(i-1)h(where i=1,2,3, . . . ,70~ h=0.2 ~ ). 
Through calculating by Eq. (1) and Eq. (37, we obtain the calculated values y~(i=l, 2, 3 , . . . ,  
70~see Fig.1)~pararnetric values f=0.25, A=69.574~'V,P=16.323217 ~ , W1=4.188987 ~ ,Wr=6.015576 ~ ,k=0.285 
and Xo =11.1 ~ ,and the relative error of fit 8=0 .68%(see  Table 1). 

(b) Amorphous polyethylene glycol terephthalate specimen 
Angles of diffraction x ( 2 0 )  take values between 6. 2 ~ and 30 ~ , sum of points of d i -  

vision m=120, value of each point of division ~=6. 2 ~ + ( i -1 )h  (where i=l, 2, 3 , . . . ,  120~ h=0.2 ~ ). 
Through calculating by Eq. (1) and Eq. (3), we obtain the calculated values y~(i=l, 2, 3 , . . . ,  
120~ see Fig. 1) ; parametric values f=0. 35, A=63. 8, P=20.97 ~ , Wl=7.  36 ~ , Wr=6. 98 ~ , k=0. 216 
and Xo =19.8 ~ ,and the relative error of fit 8--0 .75%(see Table 1). 

(c) Amorphous polymethyl methacrylate specimen 
Angles of diffraction x ( 2 0 )  take values between 10.2 ~ and 24 ~ ,sum of points of d i -  

vision m=70,  value of each point of division x~=10.2 ~ +( i -1)h(where  i=l, 2,3 . . . . .  70~h=0. 2 ~ ). 
Through calculating by Eq. (1) and Eq. (3), we obtain the calculated values ydi=l ,  2, 3 . . . . .  
70~ see Fig. 1) ~ parametric values f=0. 98, A=108. 02, P=13. 68 ~ , Wl=4.22 ~ , Wr=5. 38 ~ , k=0. 32 
and Xo =11.37 ~ ,and the relative error of fit 8=0 .62%(see  Table 1). 

(d) Specimen of undrawn polypropyrene fibers containing both crystalline s ta te  with a little 
transitive state of ha l f -and-hal f  order (Note co ' )  and amorphous state 

Angles of diffraction x ( 2 0 )  take values between 10.2 ~ and 24 ~ ,sum of points of d i -  
vision m=70, value of each point of division x m l 0 . 2  ~ -t-(i--1)h (where i=1 ,2 ,3  . . . .  ,70~ 
h=0.2 ~ 7. Through calculating by Eq. (1) and Eq. (37, we obtain the values as follows: (i)the 
parametric values and the calculated values of the diffraction strength for amorphous diffraction 
peakz P=16.55 ~ , A=46, Wl=3.9 ~ , Wr=5. 25 ~ , f=0.75, k=0. 285, x o =12 ~ and y ~  (i=1, 2, 3, -.-, 
70,see Table 2 and Fig.2), (ii)for (110)face diffraction peak: P=14.0248 ~ ,A=167,Wl=0.5606 ~ ,Wr=0.4852 ~ ,f=l, 
k=1.99, Xo =13.882 ~ and yi(11o~(i=1,2,3, . . . .  70 ,see  Table 2 and Fig.2) ,  (iii)for (040) face 
diffraction peak.. P=16. 87 ~ , A=189, Wl=0. 55 ~ , Wr--O. 475 ~ , f=l ,  k=2. O, x o =16. 726 ~ and 
y ~ ( 0 4 0 ~ ( i = 1 , 2 , 3 , . . . , 7 0 , s e e  T a b l e  2 and F ig .  2 ) ~ ( i v ) f o r  ( 1 3 0 ) f a c e  d i f f r a c t i o n  
peak: P=18.52 ~ , A=109, Wl=0.5812 ~ , Wr=0.5005 ~ , f=0.5, k=l. 75, x o =18.36 o and y,~.~0, (i=1, 
2, 3 , . . . ,70~  See Table 2 and Fig. 2)~ (v)the sum of calculated values of the diffraction 
strength: yi=yi,~+yl~l10~+yi~040~+y~r (i=l, 2, 3 , . . . ,  70~ see Fig. 2) ; (vi) the relative error of fit: 
~5=2.2%(see Table 2). 

Note: a)Computational procedure omitted; b) Measured values (in Fig. 1 and Fig. 2) are 
introduced from the references (1) and (7). 

Now to sum up the results computed with various formulae for the same specimen in Table 
1 and Table 2, we discover that the errors arise from the Eq. (1) are the smallest. At the 
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s a m e  t ime,  w e  d rew t h e  d iag rams(F ig .  1 and Fig.  2) based  on t h e  ca lcu la t ed  va lues  and 
measured values. As  shown in the  Fig. 1 and Fig. 2 tha t  the  diffraction curve and calculated 

curve a re  almost coincident. All these  sugges t  tha t  Eq. (1) possesses  be t t e r  suitability. 

Table 1. The Comparisons of  t he  Resul ts  Computed  wi th  Various  Formulae  for  Amorphous  

Specimens (a) (b) and (c). 

Formulary 
Specimens 

Types 
Gaussian- 
Cauchy (a) 

Function {1) 

Polynomial of 
(a) 

Degree3 {1] 

First (a) 

Characteristic (b) 

Function (1) (c) 

Second (a) 

Characteristic (b) 

Functio n (i) (c) 

Synthetic (a) 
Function (7] (b) 

(c) 
The Present (a) 

Formula (1) (b) 

(c) 

A P f Wl Wr k x ~ 8 (%) 

above 
6.3 

above 
10. 0 

68. 91 16. 43" -- 4. 486 o 5. 979 ~ - - 2.0 
64.198 20.92* -- 7.548 ~ 7.061 ~ - -- 2.9 
107. 24 14.01 ~ -- 1 4. 385 ~ 4. 987 ~ - -- 1.8 
69.57 16. 44 ~ -- 4. 432 ~ 5. 915 ~ - -- 1.5 
64. 933 20. 75 ~ - 7.168 o 7. 204 ~ - -- 2. 2 
107. 45 14.10 ~ - 4. 651 ~ 4.844 ~ - - 2.5 
68. 912 16.437 ~ 0. 7 4.4868 ~ 5. 9790 ~ -- - 1.80 
64.1984 20. 922 ~ 0. 65 i'. 5483 ~ 7. 0612 ~ -- - 2. 46 
107. 246 14. 015 ~ 0. 99 .3852 ~ 4. 9875 ~ -- - 1.88 
69. 574 16. 323 ~ 0. 25 t. 1889 ~ 6. 0155~ 0. 285 11.1" 0. 68 
63. 8000 20. 970 ~ 0. 35 i'. 3600 ~ 6. 9800 ~ 0. 216 19. 8 ~ 0. 75 
108. 020 13. 680 ~ 0. 98 L 2200 ~ 5. 3800 ~ 0. 32 11.37 ~ 0. 62 

Results and Discussion 
1. According to  t he  above  evaluation,  t he  formula (1) may be used in descr ipt ion of  t h e  

X - r a y  diffraction multipeak of the  quite pure crystalline s ta te ,  amorphous s ta te  and crystalline 

s t a t e  with a little t ransi t ive s t a t e  of  h a l f - a n d - h a l t  order  successfully.  W e  think tha t  it may 
also describe the  X - r a y  diffraction multipeak of  the  pure transitive s ta te .  In fact ,  the  degree 
of  order  in the  t ransi t ive s t a t e  s tands  be tween  the  pure crystall ine s t a t e  and the  amorphous 
s ta te ,  and def lec t s  to t he  former.  The h a l f - p e a k  b read ths  a t  lef t  and right show inequality 
on X - r a y  diffraction multipeak. I ts  symmetry is not  as good as  the pure crystalline s ta te ,  but 
is far  be t t e r  than  the  amorphous s t a t e .  The deg ree  of  a symmet ry  can be ca lcula ted  in t h e  
formula( l ) ,  even a little difference can be identified. From the  examination and calculation for 
specimens of undrawn polypropyrene fibers in both crystalline s ta te  with a little transitive s t a t e  
of  h a l f - a n d - h a l f  order  and amorphous s t a t e ,  it can  be seen  tha t  the  d i f fe rence  of  lef t  and 

right h a l f - p e a k  b read th  is 0 . 0 7 6  ~ in (110) f a c e  d i f f rac t ion  peak,  0. 075 ~ in (040)face ,  
0. 080 ~ in (130)face respectively, and the  higher the  peak, the  smaller the  di f ference of left  
and right h a l f - p e a k  b read th ( see  Table 2 ) . I n  short ,  the  formula( l )  can  be used to  distinguish 

the  di f ference be tween  lef t  and right h a l f - p e a k  breadth,  so  that ,  it may well describe X - r a y  

diffraction multipeak of  the  pure transit ive s ta te .  
2. There are  reciprocal restraint  conditions be tween  principal parameters  P, Wl and Wr in 

former formulae, for example, Wl must  be smaller than Wr~position of  P also a f fec t s  Wl and 
Wr. Thus, P, Wl and Wr  can not be taken as  arbitrary values and the  former formulae have 
i ts  l imitations in application. Now judging from the  configuration of  f o rmu la ( i ) ,  P,  Wl and 
Wr d o n '  t res t r ic t  mutually, therefore  the  limitations have been  eliminated. 

3. As  shown in the  configuration of  fo rmula ( i ) ,  the  interval of  diffraction angle may be 
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increased or decreased at will~ the starting values of parameters A, P, Wl, Wr may also be 
taken at  will. The suitable values can be found finally by iterative calculation of computer. 

Table 2. The Comparisons of the Results Computed with Various Formulae for the Specimen 

(d) 

Formulary Types of Diffra- 
Types Crystalline ction A f P W 

State Peaks 
Gaussian ex* 110 171. 7 0. 98 14. 00 ~ 1.01 ~ 
---Cauchy Crystalline 040 204. 5 0.81 16. 84 ~ ).99 ~ 
Function State 130 110. 6 0. 71 18. 56 ~ .. 04 ~ 

Polynomial Amorphous 
~f De~ree4 (81 State 

Gaussiaa r 110 171.07 0. 98 13. 99 ~ 1.01 ~ 
-Cauchy Crystalline 040 192. 62 0. 99 16. 83 ~ ). 98 ~ 
Function State 130 110.02 0. 71 18. 50 ~ 0.98 ~ 

First Char- Amorphous 
acteristic State 46. 20 17. 03 ~ 

Function{l) 
Gaussian a *  110 175. 000 0984 13. 992 ~ 
--Cauchy Crystalline 040 196. 600 0. 999 16. 839 ~ 
Function State 130 110. 027 0. 715 18. 504 ~ 

Synthetic Amorphous 46. 205 0. 650 17. 033 ~ 
Function (7) State 

(x* 110 167. 000 L 000 14. 025 ~ 
The Present Crystalline 040 189. 000 1.000 16.870 ~ 
Formula (1) State 130 109. 000 0.500 18. 520 ~ 

Amorphous 46. 000 0. 750 16. 550 ~ 
State 

Note: Melting extruding temperature 270~ 

8 

Wl Wr k x o (%) 

5.9 

[ . 0 0 0  ~ 

). 972 ~ 
). 987 ~ 

4.40 ~ 4.84 ~ 

L405 ~ 4.848 ~ 

).561 ~ 0.485 ~ 1.990:t3.882 ~ 
3.550 ~ 0.475 ~ 2.000 16.726 ~ 
3. 581 ~ 0. 501 ~ 1. 750 18.350 ~ 
3.900 ~ 5.250 ~ 0.285 12.000 ~ 

5.1 

~.7 

2.2 

If a starting value taken is away from true value too far, the number of times of iteration 

will be increased, and the process of calculation will be prolonged, therefore the starting values 

taken should be as near the true value as possible. 
4. Since there is a parametric factor k in the formula (1), the independent variable x may 

represent O or 20~ x may also represent other independent variables besides diffraction a n -  

gle. So the similar diagrams can adequately be described by the formula(i).  
5. The formula(I) can also describe the peaks with varied shape, thus it is applicable to 

curves which have large or small experimental error. When error of fitting equals to experimental 
error, the computation finished. The formula(i) possesses greater flexibility in its application. 

6. In view of shape of X - r a y  diffraction multipeak of some polymers, the left half-peak 
breadth Wl is smaller than right half-peak breadth Wr in X - r a y  diffraction multipeak of the 
amorphous state  in the great majority of cases. The same phenomenon also appears in X - r a y  
diffraction multipeaks of the crystalline s ta te  with a little transitive s ta te  of h a l f - a n d - h a l f  
order or the pure transitive state. But the left hal f -peak breadth W1 is larger than right Wr 
in the three s ta tes  sometimes. Moreover,  in general there  is always a convex or concave 
section at  the left half-peak.  Therefore when constituting the formula(I),  we must consider 
these specialities of peak shape. For this reason, the authors have added two parameters X o 
and k into the formual(1). The X o represents the angular coordinate of the concave or convex 
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Fig.1. a, X-ray diffraction 
curve  (solid line) and 
calculated curve(dotted 
line) of specimen(a); 

b, X-ray diffraction 
curve(so l id  line) and 
calculated curve (dotted 
line) of specimen(b); 

c, X-ray diffraction 
curve  (solid line) and 
calculated curve (dotted 
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Fig.2. X-ray diffraction 
curve of the specimen 
(d) and its division. 
Solid line, diffraction 
curve; dashed line, 
calculated curve;dotted 
line, combined 
calculated curve. 
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top; the k represents the concave or convex extent. The concave or convex extent is determined 
by the experimental curve of certain sample. To make the left half--peak increase and the 
right haft-peak decrease, X o and k must take suitable values satisfying the following differential 
inequalities on the actual experimental curve: 

dy(A, P, f, W], Wr, x o , k, x) 

dx 
> 0 (when x (P ) ,  (4) 

dy (A, P, f, WI, Wr, x o , k, x) 
0 (when x~P) (5) 

dx 
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So long as the optimal values of X o and k are taken according to the conditions of 
inequalities(4) and (5), it may be ensured fitting mutually between the calculated and experimental 
curves well enough. Only when x=P, the following equality holds.. 

dy (A, P, f, Wl, Wr, x o , k, x) 
= 0 (6)  

dx 

Thus, it may be ensured that the formula(i) is a single extremal function in the choosed 
interval 

7. However the actual experimental curve deviates either to the function of first term of 
formula (1) or to second, it is determined by the peak shape factor f. In the light of experience 
the factor f takes value in I fl ~1.  This should be effected by the transformation f=sin ff in 
the calculation, otherwise the strength of X-ray  diffraction is a negative value sometimes, it 
is unreasonable. 

8. There are some special cases of Eq. (1): (i)when WI=Wr, and 0<f(1,  Eq. (Dis exactly 
a combined Gaussian-Cauchy function, i.e. Eq. (2); (if)when WI=Wr and f--l, Eq. (Dis just a 
Gaussian funetiom (iii)when WI=Wr and f=0, Eq. (1) is just a Cauchy fanction~ (iv)when W l ~  
Wr but f=l, Eq. (1) is called a generalized Gaussian functiomand (v) when Wl=~Wr but f=0, 
Eq. (Dis called a generalized Cauehy function. 

9. The Gaussian function is a symmetric function of index type~ the Cauchy function is a 
symmetric function of fraction type. The curve of the Gausslan function decreases fast at the 
left and fight of peak, but the curve of the Canchy function decreases rather slowly. With the 
change of parameters A, P, W, they can represent many symmetric curves. If they are combined 
by the combinatorial coefficient f and constituting a function fG+(1- f )C ,  it can represent 
more symmetric curves with the changes of f, A, P, W. But the three functions can only 
represent symmetric curves, they are not able to represent asymmetric curves. Thus, they 
possess large limitation in the application, because the peaks of many curves are asymmetrical 
in practice. The formula(l) created by the authors has not such limitation. I t  includes the 
above five special cases and can characterize the curves of both symmetric and asymmetric 
peaks. Consequently its application is very extensive. 

10. From the Table 1 and Table 2, it is seen that the strength(A) of X- ray  diffraction 
multipeak of amorphous state is small, the left and right half-peak breadth(Wl, Wr)is wide, 
and the difference between W1 and Wr is larger~ the strength (A) of X - r a y  diffraction 
multipeak of crystalline state with a little transitive state of half-and-half  order is large, the 
left and right haft-peak breadth(Wl, Wr) is narrow, and the difference between Wl and Wr 
is extremely small which is smaller than 0.1 ~ . Because the degree of order in the amorphous 
state is far smaller than that in the crystalline state, the above cases take place. Therefore, 
the three numerical values(the peak height A~ magnitude of half-peak breadth Wl, Wr~ the 
difference between W1 and Wr)can serve as an important mark of the degree of order in 
polymers intuitively. 

11. I t  should be stressed that because the specimen of undrawn polypropyrene fibers 
contains a little transitive state of half-and-half order in crystalline region, the X-ray diffraction 
peaks of the crystalline portion are slightly asymmetric(see Fig. 2 and Table 2). 

12. The k is far smaller than 1 for the amorphous state, but the k is far larger than 1 for 
the crystalline state with a little transitive state of half--and-half order, and transitive state. 
This is determined by magnitude of the value of ln(Wr/W1). Thus, it may be ensured that 
the inequalities (4) and (5) hold. The value of ln(Wr/Wl)  may be used as a reference for 
selecting the starting value of k. 
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13. If the number of resolved peaks can be seen on the diffraction curve of a specimen, 
the separation of curve is unique~ if it can not be seen, the separation may not be unique. 
In latter case the selection of a correct solution should be determined by some analyses of the 
concrete experiment. 

Conclusions 
From what is proven and discussed above, we may obtain following conclusions: 
1.The X - m y  diffraction of three phases(crystalline, transitive and amorphous)of some 

polymers possesses unified law of diffraction, it may be characterized by same equation. 
2. Since fitting accuracy of the formula(I) is very high, it can reflect X-ray  diffraction 

law of three phases precisely. 
3. The formula (1) satisfies eight requests in application and includes five special examples, 

therefore it possesses better flexibility and generality in application. 
4. The formula (1) possesses theoretical completeness and logicality. It reflects the dialectical 

relation of the unity of opposites between different phases in polymers, and the relation of 
gradual transformation from quantitative to qualitative change between different phases is seen 
visually from formuh(1). Its principal mark is changed extent of some key parameters. 

5. When studying the relation between structure and properties of complex polymers by 
means of the resolution of X- ray  diffraction peak of the superposition, the formula(I) can 
give accurate data of quantitative and qualitative relation. To use some parameter values 
computed by the formula(i) not only can compute out accurately crystallinity, distance between 
crystal faces and unit cell parameters in polymers, but also can carry out many valuable 
exploration for crystal grain size, lattice distortion and transitive state in polymers. 

6. The formuh(1) is a indispensable supplement of the Gaussian-Cauchy function in actual 
application. 
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